
Low Cost Management of Replicated Data in
Fault-Tolerant Distributed Systems

THOMAS A. JOSEPH and KENNETH P. BIRMAN

Cornetl University

Many distributed systems replicate data for fault tolerance or availabdity. [n such systems, a logtcat
update on a data _tem results in a physical update on a number of copies. The synchronization and
communication required to keep the copies of replicated data conmstant introduce a delay when
operations are performed. [n this paper, we describe a technique that relaxes the usual daffree of

synchronization, permitting replicated data items to be updatsd concurrently with other operations,
while at the same time ensurinl that correctness is not violated. The edd/tiomd concurrency thus
obtained results in better response time when performin| operations on roplicated data. We also
discus* how th,, technique performs in conjunction with a roll-back and= roll.forward failure recovery
mechanism.

Categories and Subject Descriptors: C.2.4 [Computer-Communication N.twork=l: Distributed
Systems--dL_tributed =pp_icatior_: dLstribu:ed dozes; C.4 {Computer Systems Orluizatioa]:
Performance of Systems--rel_bi_r2, 0wa_ab_ty, am_ seruiceab_li_.: D.4.I [OlPeratiml Systems]:

Process Manelemant--concurrency; synchromzation; D.4.$ [Olleratial Systems}: Reliability--
chec/q2oint/restart; [au_.to_r_tce: H.2. '_ [DIItllbllml Mlllllematl: Physics/Dnqln--rwo_r_
restart; H.2.4 [DatebeN Manaleme,,t}: Systems--¢mru_t=on proorum#.

General Terms: Reliability

Additional Key Words and Phrases: Replicated data, concurrent update, piuybacked update, roll-

forward recovery.

1. INTROOUCTION

The advent of distributed computing systems has added a new aspect to fault

tolerance. A distributed system consists of a number of processing units (sites)

connected by a communications network and fault tolerance can hence be

achieved by replicating information at multiple sites. This, however, usually

entails a substantial performance degradation, because the sites must coordinate

and synchronize their actions to ensure the consistency and correctness of

replicated information. The associated overhead manifests itself as poorer re-

sponse time. [n certain situations, an application may not be able to tolerate this

delay, and in any caN, it is usually desirable to improve responsiveness to the

Thus work we= supported by dm Defan_ Advanced Research Project= A4ancy (DoD) under ARPA

order 5378, Contract MDA-9(]_88-C-0124. The views, opinions, and t'md/nls contained herein are
thoas of the authoes and should not be construed as an official DoD Ixmition, policy, or d_ision. This

work wus alsomq=_orted in pertby • Iprantfrom the Sperry Corpora,on.

Autheeu'adldnE Delmrtmant ofComputer Science.Comell Univtmty. Ithaca.NY 14883.

Pemmmom to COlff without rue all or part of this matarial is Irranted provided that tim copies are not
mad* ot disttiimted for dhuet commercia/advantap, the ACM eopyri_t notice and the title of the

publkatims and itsdam oplpem',and noti¢,i, lliV*nthattop,in| i, by permiasionofthe/umo¢iation

for Computinl Machinery. To _ otharwias, or to republish, rwquim • fee and/or specific

permmion.
t_ ACM 0734-207U86/0200-00,54 $00.T5

ACM Trirumctions on Comlmtmr Sysmms, Voi. 4, No. I. F_ t_8, Paps _I--'t0.

r,! _L Jr,:_T=!! J_TA i'? FAULT-T._LL_A_ I

_.I ,TP] itIT' ; :,Y:_Tc'] (Corn.dll Univ.)]7 "_

", :, / ,':J2

NOO-Z o _7J

Low-Cost Managementof RepiicateclData 55

extentpossible.Inthispaper,we presenta techniquethatreduces,and sometimes

eliminates,the latencyarisingfrom replication.Itworks by relaxingthe levelof

synchronizationusuallyemployed tomaintaintheconsistencyofreplicateddata,

whileat the same time ensuringthatthisconsistencyisnot compromised. In a

system where the costof managing replicateddata isdominant, the additional

concurrencythusobtainedwillresultinbetterresponsetime.

The techniquewe describeisapplicabletodistributedcomputer systems that

are asynchronous in nature,that is,they coordinatetheiractionsby sending
messages toone anotherand do not use a "globalclock"forsynchronization.We

assume thatthe communication medium isreliable,and thatprocessorsarefail-

stop[15J:the only failuretheysufferisa haltingfailure--theystopprocessing,
and theothersitesare informedoftheirfailureLNo informationstoredata site

survivesa failure.Although we describethe method with respectto replicated

databases,itisapplicableto more generalreplicatedsystems.The generalization

toobject-baseddistributedsystems isdescribedin [11].

In the nextsection,we describeour model forreplicatedsystems.Itissimilar

tothe model forreplicateddatabasesin [2].InSection3,we examine the concept
of "order"as appliedto an asynchronous system,and draw some conclusions

about the message patternsin such systems.We next describehow replication

introducesdelaysinperformingoperations.InSection5,we presentan algorithm

thatcould be used to eliminatesome of the latencycaused by replication,but

which isunsatisfactorybecauseitgeneratesunnecessarilyheavy messafe traffic.
The algorithmof Section5 isthen modifiedto form the basisof a method to

increaseconcurrencyand thus improve responsetime.Sections7 and 8 discuss

how thisscheme performs inthe presenceof sitefailures.An implementationof

thismethod and itsperformance aredescribedinthe nextsection,and Sections

10 and 11 concludethe paper.

2. MODEL

A replicated system is modeled by a collection of repticat_ data/¢ern_ that are
accessed by Log/cal operat/_na. A replicated data item is one that is stored

redundantly at multiple sites z. The operations that can be performed on a

replicated data item are read, which returns its value, and wr/te, which changes
its value: Although each copy of a data item can be read or written independently,
a user has the view that only a single copy exists. A logical operation issued at a

site is implemented by executing a physical operation on one or more copies of
the data item in question. For now, we assume that a copy always exists at a site
where a logical read is issued, and that it is implemented by a physical read of

that copy. Hence, we do not distinlpdsh between a logical read and the physical
read that implements it--both terms refer to the same operation. A logical write,

This absm'tion cam be implemented on mp of am unreliable communicat/on medium by am
appropriate _ Imyer.

The work in _ pel_r is equally valid if the term s/re m interpreted as pvoct_ at a s/be, provided

proem do not m memory, and communicate only by sending me_qpm to one amoth_.

_'Write opera,ore m not limiu_l to opemtiorm that overwrite the value of • date item with • new

one. They may include such operat/ou as incmnmntin| • date item. insertinl| an elammnt in a data

item that represents• queue, e¢.

ACM Trenmet|ons on Computer Systems. Voi. 4. No. 1. February 19_

56 . T.A. JOSe,1 a_l K. P. Birman

f

I

on the other hand, results in an ut_ate instruction being sent to each of the
copies, and physical writes occur on all of them.

High level operations are modeled by transactior_, which perform operations
on different data items in a certain order. A transaction T is modeled by a tuple
(OPt, <T), where OPt is a set of logical operations and <r is a partial order on
them. The partial order <T embodies the data flow relationships between the

operations in OPr, and a correct execution of T must observe this order. A logical
read (write) operation on data item x by transaction T is represented as
R(=, T, s) (resp. W(x, 7', s)), where s is the site at which the operation is issued.
We use the notation O(z, 7",s) to represent an arbitrary read or write operation,
and use R, W, or 0 when the context is clear. If • transaction has more than
one reed (write) on the same data item, the ith reed (write) is denoted as R'

(r_p. W').
When transactions are run concurrently, the execution of operations from

different transactions may be interleaved. A correct execution should respect the
partial order <r, for each trammction T,. In addition, the execution should be
ser/a//zab/e, that is, its effect should be the same as if the transactions were

exlcuted inck_pendently in some serial order. A concurrency control a_or/thm is
to ensure that all executions are serializable. A number of such all[orithms

an, known and are discussed in [I, 3, 12, 14]. Here we mmme that • conflict.

based allorithm is in use, although the rasults can be extended to other kinds of
aljorithms. Two logical operations conf//ct if they both operate on the mine data
item and at least one of them it • write. A confllct-based algorithm works by

orderin8 conflicting operations in such • way that only seri_le executions
are produced. The machan/sms uasd to order operation, depend on the degree of

synchronization available in the system. In the next section, we diacu_ the
concept of "order" as it relates to an asynchronotu sy_enL The details of the

particular altorithm used are not essential to our treatment.
Formally, the concurrent execution of a set of transactions Tx, T2, ..., T,

gives rise to • _ lol L - (OPL, <L). OPt, it the union of OPt, for all i, and
<, it • _ order on the operations in OPL, representing the order in which
they are ezo_te& If O_ <c 02, wo say that 01 is S¢_ after Ox. L is correct
if Vi: <, _ <r,, and if there exists a total order <s, called a se_n order,
on the set [Tt, Ts, --., T.J such that if an operation O_ in transaction 7'.

conflicts with an operation O_ in T,,and if 7'. <8 T,, then O_ <L 0=.
Given • correct logical log/,, we say that a write operation W writes before an

operation O on the same data item, if O is scheduled after W and there is no
other writs operation W" on the stone data item scheduled after W but before O.

If 0 it • reed operation, it means that 0 reads the value written by W. In other
words, W(z, T., s) writes before O(z, T,, t) if W(=, T., s) and 0(,_, Tb, t) belong

to OP,, W(z, 7'., s) <, O(x, Tb, t), and there it no W(x, T,, v) such that
W(=, 7"., s) <L W(z, T., u) <L O(z, Tb, t).

In Figure I, we show three transactions, 7'., T,, and T., and • correct logical
log L for the_ trmumctionL There are three site, s, t, and v in the system, and

the data items z, y, and z each reside at all the sites. The partial order <L is the
transitive clomul of the relations shown in the figure. A serialization order 3

corresponding to L it Tb <L T_ <L T.. W(_ T. v) write, before R(x, 7'., s).
W(y, T,, u) writes before R(y, 7',, s), and W(z, Tb, t) writes before W(z, T,, u).

ACM T_ on Computmr Systems, VoL 4, No. 1. February 1_

t
a

_-. _. s)

<-

Low-Cost Managementof RecJicatodData

'.'4_'Z. "a, Si 70 R{x,T=,:_ _ ,'. , -: :!

57

_.'(x. 7:, _)
t

_(Z, 74, :) _<-:

_/J!y, T., v)

c, 4I.

...:_(,..T_,s)--R(x.Ta,s)--W(z.T'j.s) S;:es

_(x. Ta. t) - w(x, _'_. : ... S,:et

...,.,.,,

FiB.1. Threetmr_K_ion,and • corrt_ Io8¢al tog.

3. ORDER IN AN ASYNCHRONOUS SYSTEM

A logical log depicts a temporal order between executions of logical operations.
As Lamport has observed [13], the only temporal order that is mesnincful
between events at different sites in a d/atributed asynchronous system is one

based on the messages sent between them. Events that occur at a single site are
ordered in time in the normal way. The act of sendinIj a messap from one site
precedes the receipt of the same message at another. Any two events that are not

(transitively) related to each other in one of these two ways are said to be

concurrent, that is, there is no temporal order between them. Informally, an
event a at a site s is ordered temporally aRer an event b at site t if, and only it',
there is a sequence of meesapm, the first one ori_natinl from site t after the

event b, the next message bein4J sent from the destination site of the first message
after the first meseaZe is received there, and so on, with the last mesuSe being
received at site s before the event ¢ If there is no such "path" of musqes from

b to a, b can not csuuUy affect a, and the two events 8re not temporally ordered.
In particular, for a concurrency control alsorithm to enforce an order between

loaical operations at different sitos, it must cause _nchronL_ion meuaEes to be
sent between the sites. This is reflectedin the physicallo#.

A physical Io8 P, for a lolicsl log L it a record of all logical and physical
operations carried out at each site, tolrethar with msesale transmissions between

sites. It consists of a set of oct/ons, where an action is the execution of a logical

or a physical operation, or the sending or receipt of a mumps. Additionally, it
records the order in which actions are carried out, We use upper case letters to
represent logical operations and lower case for physical operations. Thus, a

physical write operation at site t resulting from a logical operation W(z, 7'., s) is

ACM Transactions on Compu_.r Syszeam. VoL 4. No. h Febrmuy I_

58 • T.A. Josegttanti K. P. Birman

denoted w(x, To, t). R(x, To, s) and r(x, T_, s) refer to the same action--the read
operation on x. We use the notation send(m) (receive(m)) for the action corre-

sponding to sending (receiving) message m, and the notation sender(m)
(receiver(m)) to denote the site from (at) which r_ is sent (received).

Every physical log PL induces a temporal order -"L on its actions. As in [13],
this is defined as the transitive closure of the following relations:

(1) Ira and b are two actions at the same site, and a occurs before b, a --*L b.
(2) [fa is send(m), and b is receive(m), a --*L b.

A physical log PL represents the implementation of the behavior described in

a logical log L. Thus for a physical execution to be correct, the physical log must
conUtin all the orderinp that are in the logical log. Since "-.L contains all possible
temporal orderings between actions in P_, it follows that ---.L _ <,. Also note

that --*L is consistent with (global) real time, that is, if a --*L b, then a occurs
before b in real time (but not necessarily uice uersa). This impliee that -'L is
acyclic, otherwise it would mean that an event could occur before itself in real
time.

Observation. A message path is said to exist from an action a at site s

to an action b at site t if the physical log contains a sequence of me_mgu
ml, vn=, ..., m, (n =e 0) such that sender(mr) = s, o--,l.send(ml),
receiver_mJ = sender(m_+t), receive(mJ --,, send(m_.L), receiver(re,) = t, and

receive(re,) -,_ b. (If s ,, t, then n - 0 and the path is empty.) Observe that it

follows from the definition of ---., that a -"L b if, and only if, there is a message
path from a to b.

Tlfl_OltlBM. For any correct logic,,l log L that cont.aina two operatimts

W(z, 7'., s) and O(z, T,, t), such that W(z, 7"., s) writes before O(z, Tb, t), the
physical log PL contaitts a message path from W(z, To, s) to O(z, Tb, t).

PROOf. Since W(z, 7',, s) writes before O(z, T,, t), W(z, 7'., s) <1. O(z, T,, t).
Because -., _ <,, W(z, 7'., s) --, O(x, T,, t). The result follows from the
observation above.

4. DELAY INTROOUCED BY REPLICATION

If an operation W writee before an operation 0 in a nonreplicated system, the
value of the data item at the time O is executed _ always the value written by
W. In a replicated systam, if W(z, 7",, s) writes before O(z, Tb, t), the system

must provide the same effect as if z were nonreplicated [1]. In the simplest
implementation of logical writee, the value to be written is broadcast to ill sites

wham a copy of the dsta item resides. A physical write occurs at those sites, and
then a confirmation message is returned to the site where the logical write wss
iseuod. Only then is the logics/ write considered completed. This solution is

_ry because every write operation entails waiting for responses before

the operation _¢er the write can proceed. Figure 2 depic_ this latency.
We pruent an implementation of logical writes that permits an operation after

a write to proceed m soon as po_ible, with the physical writes being performed

concurrently at the other sites. We do this in two stages. First, we describe an

ACM T_ oa Coml=ut_ Sylmmmm, VoL 4. No. I. February |9Q6

Low-Cost Management of Rel_icate¢l Data

begtn$. e,_$

;_(x. T_, s) -- 'N(_, Ta. s) -- ;_(y. _, sJ -- commits

"_/rI_e x _,rttH_ /

at t a(k'/ "Ta _sdone"

_,(e'S t ,,

";me -

Fig. 2. Latency resulting from d_tributed writs.

59

algorithm that piggybacks update instructions on messages used by the concur-
rency control algorithm for synchronization. Then, the algorithm is modified to

permit updates to be broadcast concurrently. This gives the desired result.

5. PIGGYBACKED UPOATE

Piggybacked update is an implementation of logical writes that relaxes the level

of synchronization by deferring physical write operations until their results are

actually needed. A logical write is considered completed when the required update

instructions are generated (but not necessarily sent). This eliminates the latency
described in the last section. An added advantage is that update instructions are

all piggybacked on messages required for concurrency control. This reduces the
message traffic in the system.

If W(z, T,, s) writes before O(z, Tb, t), the physical writes for W can be

deferred, provided that w is carried out before o everywhere, and that no other

physical write w' occurs between w and o. Consider the update instruction that

must travel from site s to site t, where a physical write w must occur. The

theorem in Section 3 shows that there is always a sequence of synchronization

messages upon which this update instruction can be piggybacked such that it will

arrive at t before O is performed. The implication is that it is never necessary to

perform a broadcast to distribute updates; they can all be piggybacked upon

synchronization messages. This motivates the piggybacked update algorithm
shown in Figure 3 and described below.

The piQybacked update alsorithm assumes that a concurrency control algo-

rithm is in operation, which imposes an order on the execution of logical

operations by sending synchronization messages between sites.* Copies of the

update instructions resulting from a logical write at a site s are piggybacked on

a// synchronization messages that are subsequently sent from s. By the theorem,

the update instructions will arrive at their destinations before the execution of

any operation that depends on it. The algorithm requires that each site s maintain

a buffer Out_/n_ of outgoing update instructions. Outgo/hi, contains update

* It is convenient to think of operations is at the same site as being ordored by synchronization

messages sent from the site to itself,though thi, need not be actually implemented.

ACM Trammt'uon* on Comlmmr SyammJ. Vol. 4, No. t, February tg_

60 " T.A. JOesl_ aid K. P. Birman

Whenever a synchronization meseai_ m is being sent from site s to site t:

-- Piggyheckon m a copy o(all update instructions in Outgoing,.in order.
-- PiinlTbsckthevaluesof L_tSeen,andTh_wV_w..

Whena synchromzationmessageis receivedfromsitet:

-- Foreach site u, accept all piggybackedupdate instructionsoriginatingfromc whose timestamps
are greater than L_tSeen,[u], and set the value of L_tSeen.[u] to the targestsuch umestamp,

-- Procmm, in order, all updates pertmning co copies of data items at s, and append all other upcLate

instrucuons to OuZj_/tqf., preserving their ordar.

-- Set the value, of TheWV_w.[t][u] to the piggybackedvaluesof LaJ:S_,.[u).
-- Set the value of TheirVi_w.[ul[w]to the la_ptrof TheLrVbrw.[u][w]and the piggybackedvalueof

T_ V_w,[v l[w].
-- DeletefromOuqroing.all updaumfromsitew to sitev with timest_mpesnufflerdum or eqmflco

T_ :vitw.lw][u].

Figtu_3: Piggybackmlup_te alllorithm, esfollowedbysiteJ.

instructions from site s to other sites, as well as updates s that paas through site

sen route to other sites. Updates in Out_ing, are ordered according to the time

they are first received by site s. Copies of ulxiate instructions remain in Ou_oin#,,
and continue to be piggybacked on outgoing synchronization messages, until site
s learns that the destination h_ already received a copy. If multiple copies of an

update arrive ata site, all copies except the first are ignored.
To detect whether a copy of an update has reached its destination and to

identify and ignore duplicate copies of the same update, each logical write
operation is given a t/mcstamp. T'tmestamps have the property that if W and W'
are two logical writes at the same site, and if W <c W', then the timestamp of

W' is strictly grunter than that of W. The timestamp of a logical write, with the
site name appended, is called its operation-lD. Note that timestampa and oper-
ation-lD's can be generated locally at each site. Each update instruction carries

the timestamp of the logical write it corresponds to. It follows from the way in
which-updates are piggybacked that if an update from a site u arrives at a site s

by some path of synchronization messages, then all updates from v to s with
smaller timestempe must have already arrived at s. They, too, would have been

piggybacked on the same message path, unless they had already reached s by
another path.

At each site s, the array element Last_qeen,[v] records the value of the largest

timestamp that site s has observed on updates resulting from a logical write at u.
It ignores any update originating from o that carries a smaller timestamp, because
it must have already received a copy. Additionally, TheirView,[v][w] records the
value of Lasb.q_m_[w] at the time of the last message that site u sent to site s.
Sits e deletes from Outgo/n6,, any update from w to u carrying a smaller timestamp

than TTwirView,[v][w], becaues v must have already received a copy of it.
We now show that the algorithm is correct. We need to show that if

W(z, 7',, s) writes before O(z, T,, t), then all physical writ_ w occur before

the physical operation o at that site. (If 0 is a read, this happens only at site t.)
We must also show that no other physical write w' corr_ponding to, say

W' (z, To, u) occurs betw_n w and o.

s We uN the term updateto mun u_d_r instruction.

ACM T_ons on Comfier Systems. Vo|. 4, No. t. Febnmry tg(_

Low-Cost Management of Rel_icatecl Data 61

R(x, T=. S) -- W(x, T=. s) -- _(y. rt, sl -- ¢Or_m_r_

/

JPIYSICIIlY 'Itlf#l I \
i

1

"?._ sdone" \ T, me

_ooar@ of x) _,.,.,....

S,(i " i

=nw_cattv _(x, To. *)
•4¢f'I fB$ a

Fig. 4. Reduction in latency using piggybacked update.

Because there is always a message path from W to O (Theorem, Section 3),
the algorithm guarantees that a copy of the update instruction for W will arrive

at site t before O is executed. If O is a read, this is sufficient to ensure that w

occurs before o. If 0 is a write, the update instruction for W will be piggybacked

on any message that carries the update for O, e and will be ordered before the

update for O. This means that w will be performed before o at any site where o
is performed.

To show that w' will not occur between w and o, note that W and W' conflict,

so it follows from the definition of serializability that they must be ordered

relative to each other. Thus either W' <L W or W <L W', depending on the

serialization order. In the first case, there is a message path from W' to IT', and
a copy of the update instruction for W' will arrive at t before W is executed.

Hence, the update instruction for W' will be piggybacked on any message carrying
the update for W, and ordered before it. As a result, w' will be performed before
w, and not between w and o.

The second case (W <L W') is proved as follows. O and W' conflict, so

O <, W' or W' <L O. Since W writes before O and W <, W', the only possibility

is that O <L W'. If O is a write operation, the same argument as above shows

that any physical write o occurs before w'. If O is a read operation, note that

O <L W' implies that there is a message path from O to W'. There is a message
path from IV' to w', along which the update instruction travels. Now if w' were

to occur before the physical read o, there would be a cycle in the physical log,

which is impossible. (In this cam O and o represent the same event.) Thus w'
does not occur between w and o.

We have shown that the piggybacked update algorithm results in an imple-

mentation in which physical operations respect all the dependencies between

logical operations. [t do_ not requ/m that physical writes on different copies of

the same item be synchronizad, and thus reduces the latency associated with

executing a lolical write operation. It does not depend on the actual details of

the concurrency control algorithm, provided that some mechanism is used to

order conflicting operations. [n Figure 4, we show how the latency depicted in

Filpmt 2 i _ by piaybacked update.

TIle allorithm him the obvious dilmdvantep that update inetructions are

piglyimcked on memmp paths that might never lead to the required destination,

hence requiring unnecemmrily large messages and buffers. Some of this overhead

' This is true unlm a cq_ of tb, ulxitte instruction for W ha, =lntedy b_n received at its destination.

in which case w will have already been performed before o.

ACM Tnumlt/oa on Computer Systems. VoL 4. No. 1. February 198g

62 • T.A. Jose_ and K. P. Birrr_

could be eliminated if the concurrency control algorithm indicates which data

items a particular synchronization message refers to. For example, with a lock-
based concurrency control algorithm, the data items corresponding to a lock
acquisition or release message are always known. In this case, update instructions

for a data item could be piggybacked only on those synchronization messages
that refer to it. Another obvious optimization is to not piggyback on a message
to site t those updates in Outgoing, that have already been piggybacked on an

earlier message to t. The buffer size can also be controlled by periodically
broadcasting LmtSeert, to other sites, enabling them to discard copies of updates
that have already reached their destinations.

In many distributed systems the number of messages sent, and not their size,
is an overriding cost factor. This is the case, for example, if messages are processed
by a large number of software layers. In such a system, piggybacking would
improve performance. However, as seen in Figure 4, piggybacked update could
cause a large number of updates to be delivered st a site when a synchronization
message arrives there. As a result, an operation that might have been waiting for

a synchronization message to arrive suffers an additional delay while all the
updates are processed. Note that this is a different kind of latency from the
latency described earlier, as it does not involve waiting for messages to be sent

and acknowk_Iged, but is instead a wait for local pro_asing to take place. The
time for such local operations is usually much lower in magnitude than that for

message transmissions. Moreover, this latency is not incurred unless there is an
operation that is actually blocked, waiting for a write to be performed. However,
even this latency can be avoided using concurrent update, which employs the

piggybacked update algorithm as its basis.

6. CONCURRENT UPDATE

In the concurrent update scheme the piggybacking of operation-LD's is decoupled
from the transmission of actual data. Operation-lD's are piggybacked on syn-

chronization messages exactly as above, but update instructions are transmitted

directly to destination sites, concurrently with ongoing operations. Such trans-
missions are done using atom/c broadcasts, and are subject to a broadcast ordering
ru/e.

An atomic broadcast has the following properties:

(1) The data broadcast are either received at all the destination sites or at
none of them, even in the presents of site failursL Moreover, if broadcast B, is

sent before broadcast B2 by the same site s, then if B1 is received (anywhere), B,

is received by its destinations as well.
(2) If two atomic broadcasts mado from the same site have destinations in

common, the data are received at overlapping destinations in the same order that
the _ were initiated.

(3) Ifthe data from an atomic broadcast B_ are received at a site s before an
atomic broadcast B, is initiated at s, then the data from B, are received before

the data from B, at any overlapping destinations.

A number of protocols have been proposed for implementing broadcasts with
these and similar properties [8, 16]. In [5], we describe a communiation subsystem

ACM Trammeuons on Com_mter Systems, Voi. 4. No, t. Febnmry 1966

Low-CostManagement ofRe1_icateOData • 63

in which this atomic broadcast is available as a primitive operation. Atomic
broadcasts are included in a physical log in the same way as send events. We use
the notation AtBcast(W) to represent the event corresponding to the initiation
ofan atomicbroadcastforthe update instructionsoflogicalwriteW.

In the concurrent update scheme, a logicalwrite W(z, To, s) isconsidered

completedonce thephysicalwritew (x,Ta,s)isperformed.The atomicbroadcast

to update the other copiesof x may be initiatedafteran arbitraryamount of

time, but must followa broadcastordering rule,which requiresthat iftwo

conflictinglogicalwritesare performed at the same site,then theiratomic

broadcastsare initiatedinthe same orderthatthe logicalwriteswere performed.

In other words, if W1 - W(x, 7",, s) and W2 = W(x, T#, s), and if W_ <L W_,
then AtBcast(W_) -*L AtBcgst(W2). Physical writes are performed in the order
in which atomic broadcasts are received at a site.

The execution of logical operations is governed by a b/oc_ rubt. The piggy-
backing of operation-ID's ensures that if a write operation W(x, 7',, s) is
scheduled before an operation O(x, T#, t), then W's operation-ID is received at t

before 0 is performed. However, the update instruction for W may not have

arrived, because AtBc_t(W) can be deferred arbitrarily. The blocking rule
requires that, in such a situation, the execution of O be blocked until the update
instruction arrives, and the update is performed. _

The blocking rule ensures that if W(x, 7',, s) writes before O(z, Tb, t), then
the physical write w(x, 7"., t) is performed before O. If 0 is a read, this means
that w occurs before o. If O is a write, property (3) of atomic broadcasts ensures
that the update instructions for W will be received everywhere before those for

O. Hence, w will be performed before o at all sites at which a copy of x resides.
As with the piggybacked update scheme, we also need to show that no other
physical write w' (corresponding to logical write W') will be performed between
w and o. As before, we have two cases: W' <L W or W <i. O <1. W °.

If W' <L W and W' and IV occur at the same site s, then the broadcast
ordering rule requires that the atomic broadcast for W' be initiated before the

broadcast for 14/. It follows from property (2) of atomic broadcasts that the
update instructions for W' will be received everywhere before those for W.
Hence, w' will occur before w and not between w and o. If W' and W occur at

different sites, the piggybacked operation-LD for W' will be received at s before

W is performed there. The blocking rule would cause W to wait until the update
instruction for W' is received at s. Only then will the atomic broadcast for W be

initiated. Property (3) of atomic broadcast, implies that the update instructions

for W' will be received before tho_ for IV at any site where a copy of x exists.
Hence, w' will be performed before w.

The s_ond casearisesifW <L 0 <L W'. If0 isa writeoperation,and since
O <L W', a _ argument to the one above can be used to show that o occurs

before w'. If 0 is a read operation, the same argument as for piggybacked update
shows that ifw' were to occur beforeo,therewould have to be a cyclein the

An opt|mization is pouibh, if 0 is a wri_ operation that overwrites the valtm of z with • new value.

In this case. 0 need not be blocked, and the upda_ instruction for W is ignored when it arrives. This

can be done by maintaining • list of operation-[D's of updates that must be ignored.

ACM Trsnmct|onJ on Computer Systems, Voi. 4. No. t, Februm'y 19_

64 • T.A. Josel_ and K. P. Birmsn

R(x.T_,S}-- W_x.T,,.s)-- _(y.l"a,s_-- commpr$

\

"Ta _Sclone '_._

T,me

5

_nysJca_t v ,_r, res a /J'_ ;_(x, T=, :)

_C/'IIK_rs _0¢ cotwoee_:Pon)

Fi=.5. Concurrentupd==.

physical log. Thus in this case too, w' cannot occur between w and o. This
demonstrates the correctness of the concurrent update method.

We have shown how to implement logical writes in a way that permits physical

updates to be carried out concurrently with other operations, instead of having

to wait for updates to be acknowledged. The latency described in Section 4 does
not occur. In addition, concurrent update does not piggyback (possibly latin)

updates on every synchronization message: only operation-ID's are piggybacked
and operation-ID's are small. Hence, the overhead nmulting from this method is
low. Another advantage of transmitting updates concurrently is that physical

writes are spread out over a larger period of time than with piggybacked update,
where update instructions tend to arrive in bunches on synchronization messages.
This could lead to better utilization of local processing capability. Figure 5

illustrates the effect of using this approach on the computation of Figures 2 and

4. If, as in this figure, sufficient time elapses before the results of a write are
needed, no latency is incurred at alL

7. COMMITS, ABORTS AND FAILURES

In most database systems, a transaction terminates by executing a commit or an
abort operation. Any physical writes performed before a commit or an abort do

not cause a permanent change to the dataha_; changes are effectively made to a
copy of the variablet A commit causes the chang_ to be made visible to other
transactions, while an abort leaves the database in a state that would have
resulted if the trammction bad not executed at alL Commit and abort operations

can be included in our model by treating them as write operations on permanent
copies of the variables accessed by a transaction. A commit writes a new value,
while an abort writes the old one. A commit or an abort by a traneaction conflicts

with a read of any of the variables it writes, and is serialized by the concurrency
control algorithm in the same way as a write operation. The previous results

sbo_ concurrent update hence remain valid when commits and aborts am
LucludecL

One reason for replicating data is to ensure availability in the presence of site
failunm. In our model and in many others, all actions carried out at a site (e.g.,

physical writes, acquisition of locks) are lost if that site subsequently fails. When
a failed site recovers, it copies the necessary data from an operational site. Since
a failure results in a 1o_ of information, many concurrency control algorithms

ACM Trammctlor, s on Coml_ter $yswma, Voi. 4, No. t, February 19C_

Low-Cost Managementof Ref_cateO Data • 65

(e.g., available copies {2]) handle failures by aborting any uncommitted transac-
tion that has executed a logical operation at a site that fails. The transaction
may then be restarted at another site. This form of recovery is often called ro//-
back recovery.

It may appear that concurrent update could be incorrect in the presence of
failures because a piggybacked operation-ID could arrive at a site sen route to
site t, and be lost there if site 8 fails. However, if an operation is scheduled for

execution after a failure, there must be some path of synchronization messages
leading to it from any operation that it depended on, otherwise, the execution
would not be correct. The fact that operation-[D's are piggybacked on a//

synchronization messages ensures that they will arrive at their destinations by
this path, even if operetion-ID's along other message paths are lost.

Sometimes a commit is accompanied by an irreversible side effect, like dis-

pensing money from a machine. If a commit does not have such a side effect,
commit and abort instructions can be transmitted using concurrent update, in
the same way as update instructions. Then it"a transaction is committed at a

site, and that site fags before performing the atomic broadcast of the commit
information, all local information pertaining to the transaction is lost and the

transaction is aborted at the other sites. The effect is as it"the failure occurred
during the commit operation, leading to an abort. On the other hand, if a local

commit could have side effect= that are not undone when a failure occurs, then
all sites must engage in a commit protocol [10], which ensures that if a local

commit occurs, then all sites commit. However, it is necessary to preserve the
order of the commit operation relative to concurrent updates. For this reason, a
flush must always be performed, that is, all outstanding updates must be broadcast

atomically, before a commit protocol is invoked. With this change, concurrent
update can be used in conjunction with a roll-hack recovery method, such as the
one previously described. Note that a flush is necessary only for operations that
have irreversible side effects.

8. ROLL-FORWARD RECOVERY

Aborting transactions is just one way to recover from a site failure. Here we

outline a roll-/orward scheme, detailed in [6], and discuss how concurrent update
can be used with it. In this scheme, a transaction is executed at more than one

site, one of which, the coordinator, supervises its execution. The coordinator

periodically takes checkpoints at the other sites, called its cohort_, by transmitting
its local state to them. Each cohort carries a copy of the operations that must be

performed as part of a transaction. Hence, a cohort can continue executing a
transaction from a checkpoint, should the coord/nator fail.

When a site fails, the operational sites execute a failure protocol, similar to
the ezclude transaction described in [2], during which they agree on the occur-

rence of the fa/lure. They also agree on a relative time for the failure, effectively
serializing the failure decision with respect to other operations. Hence, a failure
decision appems in a physical lot[just as an operation on a data item. It is

scheduled a/ter operations that have been completed before the failure, and all
other operations are scheduled after it. When the failure protocol ends, new

ACM Tmmmctiovu= on Computer Sy=tem=. Vol. 4. No. l, February 19M

66 • T.A. Jose_ anti K. P. Birman

coordinators are chosen for the transactions coordinated by the failed site, and

they resume execution from their last checkpoint. The recovery scheme ensures
that operations executed before a failure are not reexecuted, or if they are, they
have exactly the same effects as before. This scheme can tolerate as many failures
as there are cohorts. If more failures occur, we say that total failure has occurred,
and in this situation, a transaction must wait until a site has recovered [17].

Checkpoints are included in our model by treating the checkpointed state of a
transaction as a replicated data item, and the action of establishing a check-

point as a write operation on this data item. A checkpoint CKP has a data
flow dependency on all operations prior to it, and all operations subsequent
to it depend on it. Thus, O <1- CKP for all prior operations O in transaction T,
and CKP <r O for all subsequent operations. For the purpose of the broad-

cast ordering rule, a checkpoint is considered to conflict with all write

operations in T.
For this recovery scheme to be correct, it is necessary that the serialization

order followed after a failure is the same as the one followed previously, because

the effects of partially executed transactions may not be valid ff a different order
is followed. This requires that information pertaining to serialization decisions

(acquisitions of locks, etc.) be maintained redundantly. Since writes occur at all
copies of data items, replicating serialization information for write operations

(e.g. acquiring write locks on all copies) is acceptable, but replicating information
pertaining to read operations could make this scheme expensive.

How does concurrent update affect this recovery mechanism? Two aspects of

the recovery method make it expensive: the need to transmit checkpoint infor-
mation to cohorts and the need to replicate serialization information. When

concurrent update is used, checkpoints and serialization information can be
treated as replicated data items and can be updated concurrently. This makes a

seemingly inefficient recovery mechanism viable.
It remains to be shown that concurrent update does not alter the relative order

of dependent operations when a failure occurs. A logical operation carried out
before a failure is said to be known after the failure if it occurs at a site other

than the one that failed or if its atomic broadcast was completed before the

failure. Operations known after a failure are not reexecuted. It is possible, when
concurrent update is being used, for a logical write W to be performed at a sits
that fails before AtBcast(W) is performed. In this case, W is not known a/ter the

failure, and is reexecuted. We mug show that this does not cause a change in

the order of dependent operations.
Let W and 0 be two operations executed before a failure, and let W write

before O. Let F represent the event corresponding to making the failure decision.
We then have W --.L O -., F. If O is known after the failure, the properties of
atomic broadcasts and the broadcast ordering and blocking rules ensure that W

is also known alter F. Hence, neither operation is resx_ If O is not known

but W is, then only O is reexecuted. Since W -*L F and the reexecution of O is
scheduled after the failure decision, it follows that W --*L O. If neither operation

is known after the failure, the normal recovery mechanism ensures that they are
both resxecuted in the correct order. Thus their relative order is preserved in all

cases.

ACM TranMcUons on Computlr Systems. Vol. 4, No. 1. Febnmry t988

Low-Cost Managementof Re_icate¢lData • 67

We have shown that concurrent update can be used in conjunction with a roll-

forward recovery scheme. Roll-forward recovery is inherently expensive and may
not be viable without techniques like concurrent update. Although we have
presented a particular roll-forward ,recovery scheme, concurrent update can be
used with any roll-forward recovery scheme that satisfies the following properties:

(1) Recovery rakes place from a previously saved state.

(2) Operations completed before the failure are not reexecuted (or, if they are,
the recovery scheme ensures that they have the same effects as the earlier
execution).

(3) Failure decisions are serialized with respect to other operations.

9. IMPLEMENTATION EXPERIENCE

This work is a consequence of research on the ISIS project at Cornell [3], which
aims to develop a system that aids in the automatic construction of fault tolerant

distributed software by replicating information. A prototype of the system has
been implemented on a cluster of SUN workstations, connected by a 10-Mbit

Ethernet. A simplified version of the method described in this paper was imple-
mented in ISIS, and has been operational since January 1985. One constraint

placed on the system architecture by the method is that the order in which

operations are executed at each site must respect the order in which update
instructions were received there. We were able to achieve this behavior without
much difficulty. Additionally, it was necessary to design a failure detection and

communication layer satisfying the fail-stop assumptions of Section 1.
The implementation differs slightly from the method as presented here. In thla

paper, the blocking rule was used to delay the execution of an operation if the
required update had not azTived. In ISIS this can be dispensed with, for the
following reason: ISIS uses two-phase locking for concurrency control Write

locks are acquired at all operational sites where a data item resides, while read
locks are acquired only locally. Locks are released when a transaction commite.
Thus if W writes before 0, 0 cannot acquire a lock at a site until the transaction

that performed W is committed there. Since commit operations are ordered after
all writes in a transaction, a commit instruction will not arrive at a site unless

all prior updates have also arrived there. Thus 0 is automatically forced to wait
for an update that it depends on, and there is no need to piggyback operation-
[D's or to have a blocking rule.

The ISIS implementation of concurrent update was compared with a synchro-
nous update algorithm. Detailed performance figut_ are given in [2]; we confine
ourselves to a summary here. Two performance measures are of interest. One,

the response time for a typical request, measures the time required to return the

result of an operation. We considered a fault-tolerant object implemented using
ISIS and diBrJdimted to 3 sites. A request that acquires a replicated write lock

updates a replicated data item and then responds to its caller, sends its reply
after about 0.6 seconds; additional updates delay the respomle by 0.1 seconde
each (the difference reflects the one-time cost of concurrency control). When

ISIS is run in a synchronous mode, verifying that each update has actually
completed before the coordinator undertakes any subsequent operations, such a

ACM Tramm_lons on Comlmcer Systems, Vol. 4, No. t. Febnmry lgM

68 • T.A. Josegttanti K. P. Bg'man

computation requires 1.5 seconds, with additional updates requiring 0.5 seconds
each. Moreover, the performance of the synchronous version degrades as the
number of sites increases, while the concurrent version gives the same perform-
ance regardless of the number of participating sites. Thus, the concurrent update
technique can have a substantial impact on performance.

If a high level of concurrency is achieved, a computation can remain active at
remote sites long after replying to the process that initiated it. A second perform-

ance measure can hence be studied: the total elapsed time between the issuing of
a request and the termination of an operation at all sites. In ISIS, we find that
the single update described above terminates after about I second, with subse-
quent updates delaying termination by about 0.3 seconds each, and with linear

degradation as the number of sites increases. It is important to recognize that
the delay to termination would not normally be an issue unless computations at
different sites compete for a lock, which does not occur frequently. Thus, for
ISIS and for many other applications, concurrent update permits extremely good

performance--almost as good as for a nondistributed system performing the

same operations--but with the advantages of replicated data and fault-toisrant
execution.

10. RELATED AND FUTURE WORK

In this paper, we have presented the concurrent update method with respect to
replicated database systems, where the operations are reads and writes. We have
further assumed that a read-one-copy, write-all-copies rule is being followed. In

[11], these assumptions are relaxed, and the method is extended to object-based
replicated systems, where the operations may be arbitrary operations on objects.
It is shown how concurrent update, used in this context, results in highly efficient

implementations of replicated objects.
We have found concmTent update so versatile and useful in the ISIS system

that we are reimplementing the communication subsystem to include a broadcast
primitive that performs concurrent update. A detailed description is given in {5].
We believe that a communication sub-system along those lines gives rise to

considerable simplicity and efficiency in the design and implementation of

replicated fault-tolerant software systems.
Concurrent update reduces the latency arising from replicating data, hence the

performance of the concurrency control algorithm could become a critical factor
in some systems. In pm'tictflar, if two-phaee locking (with write locks obtained

at all copies) were used, and the granularity of locking is individual data items,
write locking would requlrt a mesugs to each copy to request a lock and a delay
until locks are grantecL As a result, concurrent update might not significantly

improve system performance. In [7], we present a concurrency control algorithm

that m£ploits available concurrency to a greater degree than conventional meth-
_ method is not prseently being used in ISIS, but we expect methods

such as this to further improve performance.

Decoupling the transmission of updates from synchronization messages gives
rise to a degree of freedom for optimizing performance that is not available in

current systems. A message scheduler can be used to delay update instructions
until network load diminishes, or to bundle more than one update into one

ACM Tramucttons on Comim_r Systnut, VoL 4, No. t. Febnuu_ 1986

Low-Coat Management of Ref_.ated Data • 69

message. Delaying updates, however, could cause operations to block unneces-

sarily.Performing a broadcast after every write distributesinformation as soon

as possible,but increases message traffic.The optimal degree of delay depends

on the relativecosts of message transmission and response time, on the charac.

teristicsof the message transmission system, and on the degree to which trans-

actionsinteractwith one another. Constructing a message scheduler that balances
these factorsisan area for future research.

The concurrent update method respects the order <T on the operations of a

transaction 7'.Itispossible to perform transformations on the specificationof a

transaction,reordering these operations in a way that might leadto more efficient

transmission of updat4m. We are investigating the use of methods from dam flow
analysis in this connection [9].

1 1. CONCLU61ONS

We have de_ribed a technique to reduce the overhead introduced when updates

have to be made on data that am replicated in a di=m_buted system. By relaxing

the level of synchronization employed to maintain the consistency of replicated

datA, the time required to carry out operation= hi dacreasad. At the same time,

the method does not violata the con=istsncy of the data. We have presented the

technique with respect to replicated dat_um syltanm, but it can be applied to

asynchronous d/atributod sy_sms in which data are replicated for availability or

fault tolerance. It demonstrates that such replication can be supported without
additional latency when olmration= are performed. In fact, ff a transaction is

executed at a site holdinlr a copy of all the data items on which it operates,

concurrent updats might allow it to execute as rut u if replication were not in

use. Replicated systems am inherently expensive, and techniques such as this are
necessary if they ate to provide adequate performance.

AGKNO_

We would like to _knowledgo the contribution= of Dale Sksen and Fred Schnei-

der, who read earlier version= of this paper and provided helpful suggestions. Our

thanks also go to the referees, whose many detailed comments have greatly
improved the presentation of this work.

REFERENCES

I. 8KIRNSq[TJNP. AND GOODMAN, N. Cmwmrmzwy cont.-el in distributed datahem system. ACM
Comput. Surv. 13, 2 (JuneIMI), 186-222.

2. BI_NffI'lClN P. AND_)OOMAN, N. The fnilum and mco_ry problem for distribut_i database=.
In Proceedm_ _ the 2_ 8y_ msPJ'mc/,p_ of D'_ Conqm_ (Morn,real, Cansda,
Aut.).ACM, New York lma, 114-122.

3. B;mAN, K. _ am/_ult-_ in the ISIS system. In The ZOth ACM Symp_hon
oa Op=_ _ _ (On:= _ W==h., D.c. 1-4) 1986. To be publi.i_L

4. B_, K., DI855uCH, W., EL ASSaD8, ,t. JOUlq4, T. ANn RAIUCHLI. R. An ovm_i,w of the
ISIS projee_ Teeh. Rip. Tit 84-642, Department of Computer Science, Corneil University,
Ithaca, N'Y. Oat. 1904.

5. BIIEMAN, K., JOnaH. T., ANn SIriUS, D. l_liabl, communication in an unreliable environment.
Tech. Rip. TR _--_4. l_pattment of Compt_r Scienat, Comell University, Ithaca, NY. Aug.
198,5.

ACM T_ on Compu_r Systmms. VoL 4,No. I.Ftbrtu_ lgM

70 • T.A. Jose_ and K. P. Birman

6. BIRMAN, K., JOSEPH. T., RAEUCHLE, R.. AND EL ASEh_DI, A. Implementing Fault-Tolerant
Distributed Objects./EEE Trans. Softw. Eng. ! l, 6 4June t985) 502-508.

7. BIRMAN. K., JOSEPH. T. AND R.AEUCHLE, T. Ear.ending resilient object types efficiently. The

2vad GI/NTG GMI Conference on Fault-Tolerant Computzr_ Sys_rnm. (Bonn, West Germany),

Sept. 1984. Springer-Verlag.

8. CHANG. J. AND MAXEMCHUK. N. Reliable broadcast protocols. ACM Trans. Corr_ut. Syst. 2, 3
fAug. 1984), 251-273.

9. FISHER. J. A., ELLIS, J. R., RIfI'rENB£RG, J. AND NJCOLAU, A. Parallel processin¢ A smart

compder tbr a dumb machine, Tech. Pap. Department of Computer Science, Yale University,
June 1984.

10. GRAY, J. Notes on Datal_u_ Operating SystemJ. Lecture No_ in Computer Sc_nce 60,

Spnn_r-Verlq, New York 1978.
t 1. JOSEPH, T. Low coet man_ffment of mplie_tecl data. Department of Compu_r Science, Cornell

University, Ph.D. dis_rtation. Jim. 1988.
12. KOHLC_, W. A survey of technJqu_ for synchroniration and recovery in decentralized computar

systems. ACM Compa_. $urv. 13, 2 (June I981), 149-184.
13. LaMPowr, L. Time, clocks, and the orcWnn| of events in a di_ributA_¢l system. Commu_ ACM

21, 7 (July 1978), 95-114.
I4. PAPADIMrrRIOU, C. H. The serimlizability of conc_mnt da_ updates. J. ACM 26, (Oct.

1979), 631-653.
IS. SCHLICHTING, R. D. AND SCHNgSDmX, F. B. Fail-Stop p_,_ors: An al_roach to d_igain$

fault-tolerant computing syst_r_. ACM TmruL CompS. Sy_L l, 3 (Au{_ 1983), 222-238.

t6. SCHNI, DCa. F., Gmu, D. ANO SCmaC'nNO, R. "Fault-tolerant broedca_ $c/. ¢ompuL Pro-

grnm. 4. 1984. 1-15.
17. SKHN, D. Determinm| the last procN6 to faiL ACM "rmnL Comp_ Sy_L 3, (Feb. 1986).

t5-30.

Racaived November 19_4;nn,iNd Au_ tg_: _'¢eptedSeptember 1985

ACM Tranuctions on Coml_tutr Sys¢on_,Vol. 4, No. I. February t_

f

J

J

_!

J

/

Enclosed is a copy of a technical report pro,l,,red by tile ISIS

group. This report was produced under contL_et number NAG2-593.

Respect fully yours,

Susan Allen,

ISIS Project Secretary

(607) 255-9]98

TillS REPORT IS UNCLASSIFIED AND MAY BE DISTRIBUTED WITItOUT RESTRICTION

